De lineis spiralibus

Archimedes

pr-4

De lineis spiralibus, Archim├Ęde, De lineis spiralibus, Mugler, Les Belles Lettres, 1971

8

Ἀρχιμήδης Δοσνθέῳ χαίρειν

Τῶν ποτὶ Κόνωνα ἀποσταλέντων θεωρημάτων, ὑπὲρ ὧν ἀεὶ τὰς ἀποδείξιας ἐπιστέλλεις μοι γράψαι, τῶν μὲν πλείστων ἐν τοῖς ὑπὸ Ἡρακλείδα κομισθέντεσσιν ἔχεις γεγραμμένας, τινὰς δὲ αὐτῶν καὶ ἐν τῷδε τῷ βιβλίῳ γράψας ἐπιστέλλω τοι. Μὴ θαυμάσῃς δὲ εἰ πλείονα χρόνον ποιήσαντες ἐκδίδομες τὰς ἀποδείξιας αὐτῶν συμβαίνει γὰρ τοῦτο γεγενῆσθαι διὰ τὸ βούλεσθαί με πρότερον διδόμεν τοῖς περὶ τὰ μαθήματα πραγματευομένοις καὶ μαστεύειν αὐτὰ προαιρουμένοις. Πόσα γὰρ τῶν ἐν γεωμετρίᾳ θεωρημάτων οὐκ εὐμέθοδα ἐν ἀρχᾷ φανέντα χρόνῳ τὰν ἐξεργασίαν λαμβάνοντι ; Κόνων μὲν οὖν οὐχ ἱκανὸν λαβὼν ἐς τὰν μάστευσιν αὐτῶν χρόνον μετάλλαξεν τὸν βίον ἢ δῆλα ἐποίησέν κα ταῦτα πάντα εὑρὼν καὶ ἄλλα πολλὰ ἐξευρὼν καὶ ἐπὶ τὸ πλεῖον προάγαγεν γεωμετρίαν ἐπιστάμεθα γὰρ ὑπάρξασαν αὐτῷ σύνεσιν οὐ τὰν τυχοῦσαν περὶ τὸ μάθημα καὶ φιλοπονίαν ὑπερβάλλουσαν. Μετὰ δὲ τὰν Κόνωνος τελευτὰν πολλῶν ἐτέων ἐπιγεγενημένων οὐδʼ ὑφʼ ἑνὸς οὐδὲν τῶν προβλημάτων αἰσθανόμεθα κεκινημένον. Βούλομαι δὲ καθʼ ἓν ἕκαστον αὐτῶν προενέγκασθαι καὶ γὰρ συμβαίνει δύο τινὰ τῶν ἐμαυτῷ μήπω πεπερασμένων διὰ

9
τέλους ποτιτεθῆμεν, ὅπως οἱ φάμενοι μὲν πάντα εὑρίσκειν, ἀπόδειξιν δὲ αὐτῶν οὐδεμίαν ἐκφέροντες ἐλέγχωνται ποθωμολογηκότες εὑρίσκειν τὰ ἀδύνατα. Ταῦτα δὴ ποῖα τῶν προβλημάτων ἐντί, καὶ τίνων τὰς ἀποδείξιας ἔχεις ἀπεσταλμένας, καὶ ποίων ἐν τῷδε τῷ βιζλίῳ κομίζομες, δοκιμάζομες ἐμφανίξαι τοι. Πρῶτον δὴ τῶν πρϲβλημάτων ἧν · σφαίρας δοθείσας ἐπίπεδον χωρίον εὑρεῖν ἴσον τᾷ ἐπιφανείᾳ τᾶς σφαίρας. Ὃ δὴ καὶ πρῶτον ἐγένετο φανερὸν ἐκδοθέντος τοῦ περὶ τὰν σφαῖραν βιβλίου δειχθέντος γὰρ ὅτι πάσας σφαίρας ἁ ἐπιφάνεια τετραπλασία ἐστὶ τοῦ μεγίστου κύκλου τῶν ἐν τᾷ σφαίρᾳ δῆλον ὡς δυνατόν ἐστι χωρίον ἐπίπεδον εὑρεῖν ἴσον τᾷ ἐπιφανείᾳ τᾶς σφαίρας. Δεύτερον δέ · κώνου δοθέντος ἢ κυλίνδρου σφαῖραν εὑρεῖν ἴσαν τῷ κώνῳ ἢ τῷ κυλίνδρῳ. Τρίτον δὲ τὰν δοθεῖσαν σφαῖραν ἐπιπέδῳ τεμεῖν, ὥστε τὰ τμάματα αὐτᾶς ποτʼ ἄλλαλα τὸν ταχθέντα λόγον ἔχειν. Τέταρτον δέ τὰν δοθεῖσαν σφαῖραν ἐπιπέδῳ τεμεῖν, ὥστε τὰ τμάματα τᾶς ἐπιφανείας τὸν ταχθέντα λόγον ἔχειν ποτʼ ἄλλαλα. Πέμπτον δέ τὸ δοθὲν τμᾶμα σφαίρας τῷ δοθέντι τμάματι σφαίρας ὁμοιῶσαι. Ἕκτον δέ δύο δοθέντων τμαμάτων σφαίρας εἴτε τᾶς αὐτᾶς εἴτε ἄλλας εὑρεῖν τι τμᾶμα σφαίρας, ὃ ἐσσεῖται αὐτὸ μὲν ὁμοῖον τῷ ἑτέρῳ τῶν τμαμάτων, τὰν δὲ ἐπιφάνειαν ἴσαν ἕξει τᾷ ἐπιφανείᾳ τοῦ ἑτέρου τμάματος. Ἕβδομον · ἀπὸ τᾶς δοθείσας σφαίρας τμᾶμα ἀποτεμεῖν ἐπιπέδῳ, ὥστε τὸ τμᾶμα ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ὕψος ἴσον τὸν ταχθέντα λόγον ἔχειν μείζονα τοῦ ὃν ἔχει τὰ τρία ποτὶ τὰ δύο, Τούτων μὲν οὖν τῶν εἰρημένων πάντων τὰς
10
ἀποδείξιας Ἡρακλείδας ἐκόμιξεν τὸ δὲ μετὰ ταῦτα κεχωρισμένον ψεῦδος ἦν. Ἔστι δέ. εἴ κα σφαῖρα ἐπιπέδῳ τμαθῇ εἰς ἄνισα, τὸ μεῖζον τμᾶμα ποτὶ τὸ ἔλασσον διπλασίονα λόγον ἕξει ἢ ἁ μείζων ἐπιφάνεια ποτὶ τὰν ἐλάσσονα. Ὅτι δὲ τοῦτο ψεῦδός ἐστι, διὰ τῶν προαπεσταλμένων φανερόν ἐστι κεχώρισται γὰρ ἐν αὐτοῖς τόδε εἴ κα σφαῖρα ἐπιπέδῳ τμαθῇ εἰς ἄνισα ποτʼ ὀρθὰς διαμέτρῳ τινὶ τῶν ἐν τᾷ σφαίρᾳ, τᾶς μὲν ἐπιφανείας τὸ μεῖζον τμᾶμα ποτὶ τὸ ἔλασσον τὸν αὐτὸν ἕξει λόγον, ὃν τὸ τμᾶμα τὸ μεῖζον τᾶς διαμέτρου ποτὶ τὸ ἔλασσον, τὸ δὲ μεῖζον τμᾶμα τᾶς σφαίρας ποτὶ τὸ ἔλασσον ἐλάσσονα μὲν ἢ διπλάσιον λόγον ἔχει τοῦ ὃν ἔχει ἁ μείζων ἐπιφάνεια ποτὶ τὰν ἐλάσσονα, μείζονα δὲ ἢ ἡμιόλιον, Ἦν δὲ καὶ τὸ ἔσχατον κεχωρισμένον τῶν προβλημάτων ψεῦδος, ὅτι, εἴ κα σφαίρας τινὸς ἁ διάμετρος τμαθῇ, ὥστε τὸ ἀπὸ τοῦ μείζονος τμάματος τετράγωνον τριπλάσιον εἶμεν τοῦ τετραγώνου τοῦ ἀπὸ τοῦ ἐλάσσονος τμάματος, καὶ διὰ τοῦ σαμείου ἐπίπεδον ἀχθὲν ποτʼ ὀρθὰς τᾷ διαμέτρῳ τέμνῃ τὰν σφαῖραν, τὸ τοιοῦτον τῷ εἴδει σχῆμα, οἷόν ἐστι τὸ μεῖζον τᾶς σφαίρας τμᾶμα, μέγιστόν ἐστι τῶν ἄλλων τμαμάτων τῶν ἐχόντων ἴσαν τὰν ἐπιφάνειαν. Ὅτι δὲ τοῦτο ψεῦδός ἐστι δῆλον διὰ τῶν προαπεσταλμένων θεωρημάτων · δέδεικται γὰρ ὅτι τὸ ἡμισφαίριον μέγιστόν ἐστι τῶν περιεχομένων ὑπὸ ἴσας ἐπιφανείας σφαίρας τμαμάτων. Μετὰ δὲ ταῦτα περὶ τοῦ κώνου προβεβλημένα ἐστὶ τάδε εἴ κα ὀρθογωνίου κώνου τομὰ μενούσας τᾶς διαμέτρου περιενεχθῆ ὥστε εἶμεν ἄξονα τὰν διάμετρον, τὸ περιγραφὲν σχῆμα ὑπὸ τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς κωνοειδὲς καλείσθω, καὶ εἴ κα τοῦ κωνοειδέος
11
σχήματος ἐπίπεδον ἐπιψαύῃ, παρὰ δὲ τὸ ἐπιψαῦον ἐπίπεδον ἄλλο ἐπίπεδον ἀχθὲν ἀποτέμνῃ τι τμᾶμα τοῦ κωνοειδέος, τοῦ ἀποτμαθέντος τμάματος βάσις μὲν καλείσθω τὸ ἀποτέμνον ἐπίπεδον, κορυφὰ δὲ τὸ σαμεῖον, καθʼ ὃ ἐπιψαύει τὸ ἕτερον ἐπίπεδον τοῦ κωνοειδέος, Εἰ δή κα τὸ εἰρημένον σχῆμα ἐπιπέδῳ τμαθῆ ποτʼ ὀρθὰς τῷ ἄξονι, ὅτι μὲν ἁ τομὰ κύκλος ἐσσεῖται δῆλον, ὅτι δὲ τὸ ἀποτμαθὲν τμᾶμα ἡμιόλιον ἐσσεῖται τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ὕψος ἴσον, δεῖξαι δεῖ. Καὶ εἴ κα τοῦ κωνοειδέος δύο τμάματα ἀποτμαθέωντι ἐπιπέδοις ὁπωσοῦν ἀγμένοις, ὅτι μὲν οὖν αἱ τομαὶ ἐσσοῦνται ὀξυγωνίων κώνων τομαὶ δῆλον, εἴ κα τὰ ἀποτέμνοντα ἐπίπεδα μὴ ὀρθὰ ἔωντι ποτὶ τὸν ἄξονα, ὅτι δὲ τὰ τμάματα ποτʼ ἄλλαλα τοῦτον ἑξοῦντι τὸν λόγον, ὃν ἔχοντι δυνάμει ποτʼ ἀλλάλας αἱ ἀπὸ τᾶν κορυφᾶν αὐτῶν ἀγμέναι παρὰ τὸν ἄξονα μέχρι ἐπὶ τὰ ἐπίπεδα τὰ τέμνοντα, δεῖξαι δεῖ τούτων δʼ αἱ ἀποδείξιες οὕπω τοι ἀποστέλλονται. Μετὰ δὲ ταῦτα περὶ τᾶς ἕλικος ἦν προβεβλημένα ταῦτα ἐντὶ δʼ ὥσπερ ἄλλο τι γένος προβλημάτων οὐδὲν ἐπικοινωνέοντα τοῖς προειρημένοις ὑπὲρ ὧν ἐν τῷδε τῷ βιζλίῳ τὰς ἀποδείξιας γεγραφήκαμές τοι. Ἔστιν δὲ τάδε εἴ κα εὐθεῖα γραμμὰ ἐν ἐπιπέδῳ μένοντος τοῦ ἑτέρου πέρατος ἰσοταχέως περιενεχθεῖσα ἀποκατασταθῇ πάλιν ὅθεν ὥρμασεν, ἅμα δὲ τᾷ γραμμᾷ περιφερομένᾳ φέρηταί τι σαμεῖον ἰσοταχέως αὐτὸ ἑαυτῷ κατὰ τᾶς εὐθείας ἀρξάμενον ἀπὸ τοῦ μένοντος πέρατος, τὸ σαμεῖον ἕλικα γράψει ἐν τῷ ἐπιπέδῳ. φαμὶ δὴ τὸ περιλαφθὲν χωρίον ὑπό τε τᾶς ἕλικος καὶ τᾶς εὐθείας τᾶς ἀποκατασταθείσας ὅθεν ὥρμασεν τρίτον μέρος εἶμεν τοῦ κύκλου
12
τοῦ γραφέντος κέντρῳ μὲν τῷ μένοντι σαμείῳ, διαστήματι δὲ τᾷ εὐθείᾳ τᾷ διανυσθείσᾳ ὑπὸ τοῦ σαμείου ἐν τᾷ μιᾷ περιφορᾷ τᾶς εὐθείας. Καὶ εἴ κα τᾶς ἕλικος ἐπιψαύῃ τις εὐθεῖα κατὰ τὸ πέρας τᾶς ἕλικος τὸ ἔσχατον γενόμενον, ἄλλα δέ τις εὐθεῖα τᾷ περιαχθείσᾳ καὶ ἀποκατασταθείσᾳ γραμμᾷ ποτʼ ὀρθὰς ἀχθῇ ἀπὸ τοῦ μένοντος πέρατος αὐτᾶς ὥστε ἐμπεσεῖν τᾷ ἐπιψαυούσᾳ, φαμὶ τὰν ποταχθεῖσαν εὐθεῖαν ἴσαν εἶμεν τᾷ τοῦ κύκλου περιφερείᾳ. Καὶ εἴ κα ἁ περιαγομένα γραμμὰ καὶ τὸ σαμεῖον τὸ φερόμενον κατ᾿  αὐτᾶς πλείονας περιφορὰς περιενεχθέωντι καὶ ἀποκατασταθέωντι πάλιν ὅθεν ὥρμασαν, φαμὶ τοῦ χωρίου τοῦ ἐν τᾷ δευτέρᾳ περιφορᾷ ποτιλαφθέντος ὑπὸ τᾶς ἕλικος τὸ μὲν ἐν τᾷ τρίτᾳ ποτιλαφθὲν διπλάσιον ἐσσεῖσθαι, τὸ δὲ ἐν τᾷ τετάρτᾳ τριπλάσιον, τὸ δὲ ἐν τᾷ πέμπτᾳ τετραπλάσιον, καὶ ἀεὶ τὰ ἐν ταῖς ὕστερον περιφοραῖς ποτιλαμζανόμενα χωρία κατὰ τοὺς ἑξῆς ἀριθμοὺς πολλαπλάσια ἐσσεῖσθαι τοῦ ἐν τᾷ δευτέρᾳ περιφορᾷ ποτιλαφθέντος, τὸ δὲ ἐν τᾷ πρώτᾳ περιφορᾷ περιλαφθὲν χωρίον ἕκτον μέρος εἶμεν τοῦ ἐν τᾷ δευτέρᾳ περιφορᾷ ποτιλαφθέντος χωρίου. Καὶ εἴ κα ἐπὶ τᾶς ἕλικος τᾶς ἐν μιᾷ περιφορᾷ γεγραμμένας δύο σαμεῖα λαφθέωντι, καὶ ἀπʼ αὐτῶν ἐπιζευχθέωντι εὐθεῖαι ἐπὶ τὸ μεμενακὸς πέρας τᾶς περιενεχθείσας γραμμᾶς, καὶ κύκλοι δύο γραφέωντι κέντρῳ μὲν τῷ μεμενακότι σαμείῳ, διαστημάτεσσι δὲ ταῖς ἐπιζευχθείσαις ἐπὶ τὸ μεμενακὸς πέρας τᾶς εὐθείας, καὶ ἁ ἐλάσσων τᾶν ἐπιζευχθεισᾶν ἐπεκβληθῇ, φαμὶ τὸ περιλαφθὲν χωρίον ὑπό τε τᾶς τοῦ μείζονος κύκλου περιφερείας τᾶς ἐπὶ τὰ αὐτὰ τᾷ ἕλικι μεταξὺ τᾶν εὐθειᾶν ἐούσας καὶ τᾶς ἕλικος καὶ τᾶς εὐθείας τᾶς
13
ἐκβληθείσας ποτὶ τὸ περιλαφθὲν χωρίον ὑπό τε τᾶς τοῦ ἐλάσσονος κύκλου περιφερείας καὶ τᾶς αὐτᾶς ἕλικος καὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰ πέρατα αὐτᾶν τοῦτον ἕξειν τὸν λόγον, ὃν ἔχει ἁ ἐκ τοῦ κέντρου τοῦ ἐλάσσονος κύκλου μετὰ δύο τριταμορίων τᾶς ὑπεροχᾶς, ᾇ ὑπερέχει ἁ ἐκ τοῦ κέντρου τοῦ μείζονος κύκλου τᾶς ἐκ τοῦ κέντρου τοῦ ἐλάσσονος κύκλου ποτὶ τὰν ἐκ τοῦ κέντρου τοῦ ἐλάσσονος κύκλου μετα ἑνὸς τριταμορίου τᾶς εἰρημένας ὑπεροχᾶς. Τούτων δή μοι καὶ ἄλλων περὶ τᾶς ἕλικος αἱ ἀποδείξιες ἐν τῷδε τῷ βιβλίῳ γράφονται, πρόκεινται δέ, ὡς καὶ τῶν ἄλλων τῶν γεωμετρουμένων, τὰ χρείαν ἔχοντα εἰς τὰν ἀπόδειξιν αὐτῶν. Λαμζάνω δὲ καὶ ἐν τούτοις τῶν ἐν τοῖς πρότερον ἐκδεδομένοις βιβλίοις λῆμμα τόδε τᾶν ἀνισᾶν γραμμᾶν καὶ τῶν ἀνίσων χωρίων τὰν ὑπεροχάν, ᾇ ὑπερέχει τὸ μεῖζον τοῦ ἐλάσσονος, αὐτὰν ἑαυτᾷ συντιθεμέναν δυνατὸν εἶμεν παντὸς ὑπερίσχειν τοῦ προτεθέντος τῶν ποτʼ ἄλλαλα λεγομένων.

α΄.

Εἴ κα κατά τινος γραμμᾶς ἐνεχθῇ τι σαμεῖον ἰσοταχέως αὐτὸ ἑαυτῷ φερόμενον, καὶ λαφθέωντι ἐν αὐτᾷ δύο γραμμαί, αἱ ἀπολαφθεῖσαι τὸν αὐτὸν ἑξοῦντι λόγον ποτʼ ἀλλάλας ὅνπερ οἱ χρόνοι, ἐν οἷς τὸ σαμεῖον τὰς γραμμὰς ἐπορεύθη.

Ἐνηνέχθω γάρ τι σαμεῖον κατὰ τᾶς ΑΒ γραμμᾶς ἰσοταχέως, καὶ λελάφθωσαν ἐν αὐτᾷ δύο γραμμαὶ αἱ Γ△, △Ε, ἔστω δὲ ὁ χρόνος, ἐν ᾧ τὰν Γ△ γραμμὰν τὸ

14
σαμεῖον διεπορεύθη, ὁ ΖΗ, ἐν ᾧ δὲ τὰν △Ε, ὁ ΗΘ. Δεωκτέον ὅτι τὸν αὐτὸν ἔχοντι λόγον ἁ Γ△ γραμμὰ ποτὶ τὰν △Ε γραμμάν, ὃν ὁ χρόνος ὁ ΖΗ ποτὶ τὸν ΗΘ.

Συγκείσθωσαν γὰρ ἐκ τᾶν Γ△, △Ε γραμμᾶν αἱ Α△, △Β γραμμαὶ καθ' ἁντινοῦν σύνθεσιν οὕτως, ὥστε ὑπερέχειν τὰν Α△ τᾶς △Β, καὶ ὁσάκις μὲν σύγκειται ἁ Γ△ γραμμὰ ἐν τᾷ Α△, τοσαυτάκις συγκείσθω ὁ χρόνος ὁ ΖΗ ἐν τῷ χρόνῳ τῷ ΛΗ, ὁσάκις δὲ σύγκειται ἁ △Ε γραμμὰ ἐν τᾷ △Β, τοσαυτάκις συγκείσθω ὁ ΘΗ χρόνος ἐν τῷ ΚΗ χρόνῳ. Ἐπεὶ οὖν ὑπόκειται τὸ σαμεῖον ἰσοταχέως ἐνηνέχθαι κατὰ τᾶς ΑΒ γραμμᾶς, δῆλον ὡς, ἐν ὅσῳ χρόνῳ τὰν Γ△ ἐνήνεκται, ἐν τοσούτῳ καὶ ἑκάσταν ἐνήνεκται τᾶν ἰσᾶν τᾷ Γ△ · φανερὸν οὖν ὅτι καὶ συγκειμέναν τὰν Α△ γραμμὰν ἐν τοσούτῳ χρόνῳ ἐνήνεκται, ὅσος ἐστὶν ὁ ΛΗ χρόνος, ἐπειδὴ τοσαυτάκις σύγκειται ἅ τε Γ△ γραμμὰ ἐν τᾷ Α△ γραμμᾷ καὶ ὁ ΖΗ χρόνος ἐν τῷ ΛΗ χρόνῳ. Διὰ ταὐτὰ δὴ καὶ τὰν Β△ γραμμὰν ἐν τοσούτῳ χρόνῳ τὸ σαμεῖον ἐνήνεκται, ὅσος ἐστὶν ὁ ΚΗ χρόνος. Ἐπεὶ οὖν μείζων ἐστὶν ἁ Α△ γραμμὰ τᾶς Β△, δῆλον ὅτι ἐν πλείονι χρόνῳ τὸ σαμεῖον τὰν △Α διαπορεύεται γραμμὰν ἢ τὰν Β△· ὥστε ὁ χρόνος ὁ ΛΗ μείζων ἐστὶ τοῦ ΚΗ χρόνου. Ὁμοίως δὲ δειχθήσεται, καὶ εἴ κα ἐκ τῶν χρόνων τῶν ΖΗ, ΗΘ συντεθέωντι χρόνοι καθʼ ἁντινοῦν σύνθεσιν, ὥστε ὑπερέχειν τὸν ἕτερον τοῦ ἑτέρου, ὅτι καὶ τᾶν ἐκ τᾶν γραμμᾶν τᾶν Γ△, △Ε κατὰ τὰν αὐτὰν σύνθεσιν συντεθεισᾶν

15
ὑπερέξει ἁ ὁμόλογος τῷ ὑπερέχοντι χρόνῳ δῆλον οὖν ὅτι τὸν αὐτὸν ἕξει λόγον ἁ Γ△ ποτὶ τὰν △Ε, ὃν ὁ χρόνος ὁ ΖΗ ποτὶ τὸν χρόνον τὸν ΗΘ.

β΄.

Εἴ κα δύο σαμείων ἑκατέρου κατά τινος γραμμᾶς ἐνεχθέντος μὴ τᾶς αὐτᾶς ἰσοταχέως αὐτοῦ ἑαυτῷ φερομένου λαφθέωντι ἐν ἑκατέρᾳ τᾶν γραμμᾶν δύο γραμμαί, ἆν αἵ τε πρῶται ἐν ἴσοις χρόνοις ὑπὸ τῶν σαμείων διανυέσθων καὶ αἱ δεύτεραι, τὸν αὐτὸν ἑξοῦντι λόγον ποτʼ ἀλλάλας αἱ λαφθεῖσαι γραμμαί.

Ἔστω κατὰ τᾶς ΑΒ γραμμᾶς ἐνηνεγμένον τι σαμεῖον ἰσοταχέως αὐτὸ ἑαυτῷ καὶ ἄλλο κατὰ τᾶς ΚΛ, λελάφθωσαν δὲ ἐν τᾷ ΑΒ δύο αἱ Γ△, △Ε γραμμαί, καὶ ἐν τᾷ ΚΛ αἱ ΖΗ. ΗΘ, ἐν ἴσῳ δὲ χρόνῳ τὸ κατὰ τᾶς ΑΒ γραμμᾶς ἐνηνεγμένον σαμεῖον τὰν Γ△ γραμμὰν διαπορευέσθω, ἐν ὅσῳ τὸ ἕτερον κατὰ τᾶς ΚΛ ἐνηνεγμένον τὰν ΖΗ, ὁμοίως δὲ καὶ τὰν △Ε γραμμὰν ἐν ἴσῳ διαπορευέσθω τὸ σαμεῖον, ἐν ὅσῳ τὸ ἕτερον τὰν ΗΘ. Δεικτέον ὅτι τὸν αὐτὸν ἔχει λόγον ἁ Γ△ ποτὶ τὰν △Ε, ὃν ἁ ΖΗ ποτὶ τὰν ΗΘ.

Ἔστω δὴ ὁ χρόνος, ἐν ᾧ τὰν Γ△ γραμμὰν διεπορεύετο τὸ σαμεῖον, ὁ ΜΝ· ἐν τούτῳ δὴ τῷ χρόνῳ καὶ τὸ ἕτερον σαμεῖον διαπορεύεται τὰν ΖΗ. Πάλιν δὴ καὶ ἐν ᾧ τὰν

16
△Ε γραμμὰν διεπορεύετο τὸ σαμεῖον, ἔστω ὁ ΝΞ χρόνος ἐν τούτῳ δὴ καὶ τὸ ἕτερον σαμεῖον διαπορεύεται τὰν ΗΘ · τὸν αὐτὸν δὴ λόγον ἑξοῦντι ἅ τε Γ△ ποτὶ τὰν △Ε γραμμάν, ὃν ὁ χρόνος ὁ ΜΝ ποτὶ ΝΞ, καὶ ἁ ΖΗ ποτὶ τὰν ΗΘ, ὃν ὁ χρόνος ὁ ΜΝ ποτὶ τὸν ΝΞ. Δῆλον οὖν ὅτι τὸν αὐτὸν ἔχοντι λόγον ἁ Γ△ ποτὶ τὰν △Ε, ὃν ἁ ΖΗ ποτὶ τὰν ΗΘ.

γ΄.

Κύκλων δοθέντων ὁποσωνοῦν τῷ πλήθει δυνατόν ἐστιν εὐθεῖαν λαβεῖν μείζονα ἐοῦσαν τᾶν τῶν κύκλων περιφερειᾶν.

Περιγραφέντος γὰρ περὶ ἕκαστον τῶν κύκλων πολυγώνου δῆλον ὡς ἁ ἐκ πασᾶν συγκειμένα τᾶν περιμέτρων εὐθεῖα μείζων ἐσσεῖται πασᾶν τᾶν τῶν κύκλων περιφερειᾶν.

δ΄.

Δύο γραμμᾶν δοθεισᾶν ἀνισᾶν, εὐθείας τε καὶ κύκλου περιφερείας, δυνατόν ἐστι λαβεῖν εὐθεῖαν τᾶς μὲν μείζονος τᾶν δοθεισᾶν γραμμᾶν ἐλάσσονα, τᾶς δὲ ἐλάσσονος μείζονα.

Ὁσάκις γὰρ ἁ ὑπεροχά, ᾇ ὑπερέχει ἁ μείζων γραμμὰ τᾶς ἐλάσσονος, αὐτὰ ἑαυτᾷ συντιθεμένα ὑπερέξει τᾶς εὐθείας, εἰς τοσαῦτα ἴσα διαιρεθείσας τᾶς εὐθείας τὸ ἓν τμᾶμα ἔλασσον ἐσσεῖται τᾶς ὑπεροχᾶς. Εἰ μὲν οὖν κα ᾖ ἁ περιφέρεια μείζων τᾶς εὐθείας, ἑνὸς τμάματος ποτιτεθέντος ποτὶ τὰν εὐθεῖαν τᾶς μὲν ἐλάσσονος τᾶν δοθεισᾶν δῆλον ὡς μείζων ἐσσεῖται, τᾶς δὲ μείζονος

17
ἐλάσσων · εἰ δέ κα ἐλάσσων, ἑνὸς τμάματος ποτιτεθέντος ποτὶ τὰν περιφέρειαν ὁμοίως τᾶς μὲν ἐλάσσονος μείζων ἐσσεῖται, τᾶς δὲ μείζονος ἐλάσσων καὶ γὰρ ἁ ποτικειμένα ἐλάσσων ἐστὶ τᾶς ὑπεροχᾶς.